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Abstract: Pediatric severe sepsis and septic shock continue to be significant causes of childhood morbidity and mortality 

worldwide. The following review will highlight some of the controversies surrounding the consensus definitions. It will 

chronicle recent clinical and translational research, focusing on pediatric sepsis-specific challenges investigators face. It 

will also address the pathophysiology of severe sepsis and septic shock, including up-to-date therapeutic 

recommendations. 
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INTRODUCTION 

 Sepsis continues to be a significant cause of pediatric 
morbidity and mortality worldwide. According to the World 
Health Organization’s 2009 statistics report, three of the top 
four killers of children less than five years of age are from 
infectious agents resulting in pneumonia, diarrhea and 
malaria [1]. Nationally, the most recent published data 
showed that in 1995 there were more than 42,000 cases of 
severe sepsis in children, with the highest incidence in the 
very young (infants < 12 months of age) [2]. Severe sepsis is 
the fourth leading cause of death in infants behind congenital 
anomalies, prematurity and sudden infant death syndrome 
(SIDS). It is the second leading cause of death behind 
accidents in children greater than one year of age. 
Furthermore, children with sepsis represent a significant 
strain on the healthcare system and carry an overall hospital 
mortality rate of just over 10% [3,4]. 

 In 2002, an international group of experts in the field of 
pediatric sepsis gathered to establish consensus definitions to 
aid specifically in establishing a common framework for 
clinical and translational research. This group defines 
pediatric sepsis as a continuum from the systemic 
inflammatory response syndrome (SIRS) to septic shock 
based upon age-specific vital sign and laboratory changes 
[5]. Severe sepsis is defined as a proven or suspected 
infection causing SIRS (i.e. sepsis) plus either cardiovascular 
organ dysfunction or acute respiratory distress syndrome 
(ARDS). Additionally, a child is classified as having severe 
sepsis if he or she possesses two or more other organ 
dysfunctions in the absence of cardiovascular organ 
dysfunction or ARDS [5]. Septic shock is a subset of severe 
sepsis, specifically defined as sepsis plus cardiovascular 
organ dysfunction [5]. In pediatric septic shock, and in 
contrast to the consensus definitions for adult septic shock, 
hypotension is not required for the diagnosis, as it is often a 
late finding [6]. Though a distinction is made between severe 
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sepsis and septic shock in the consensus guidelines, many 
investigators continue to group these patients together for 
research purposes. Therefore, both terms will be discussed 
interchangeably in the remainder of this review. 

 There continues to be controversy surrounding the 
consensus definitions for pediatric sepsis, especially since 
there are varying grades of disease within each category. In 
2003, a group of adult sepsis researchers coined the “PIRO” 
concept at an international symposium on Intensive Care and 
Emergency Medicine [7]. PIRO is a new way of thinking 
about severely septic patients in an attempt to stage these 
patients, similarly to the way oncologists stage patients with 
the same type of cancer. The “P” stands for ‘predisposition’ 
and takes into account the patient’s condition prior to 
entering the hospital. The “I” stands for ‘infection or injury’ 
that caused the current admission. The “R” stands for 
‘response’ and categorizes the patient’s immune response to 
the infection or injury. Finally, the “O” stands for ‘organ 
dysfunction’ and looks at the end result of the inflammatory 
cascade as a result of the infection or injury [7]. 

 Formal applications of the “PIRO” concept in pediatric 
severe sepsis are lacking in the literature. However, many 
pediatric sepsis researchers have looked to biochemical 
markers to properly group patients for clinical trials and, 
more importantly, to initiate disease specific therapies more 
rapidly (i.e. “P” for ‘predisposition’). Many of the 
biochemical markers have correlated well with severe sepsis 
but few are very specific. Among others, the most common 
biochemical markers measured in pediatric patients with 
severe sepsis and septic shock are interleukin-6 (IL-6), IL-8, 
C-reactive protein (CRP), serum amyloid protein (SAA), and 
procalcitonin (PCT) [8-18]. Depending on the optimal cutoff 
value chosen, some authors describe a similar area under the 
receiver operator curve (AUC) for IL-6 and IL-8 (0.87 and 
0.87, respectively) [19] whereas others have IL-6 performing 
better than IL-8 (0.77 and 0.44, respectively) to predict 
severe bacterial infection in children [18]. SAA is potentially 
a better diagnostic marker with sensitivities, specificities, 
positive predictive values (PPV), and negative predictive 
values (NPV) all greater than 90% and an AUC 0.96 [20]. 
CRP levels are move variable for predicting severe bacterial 
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infections in children. Sensitivities, specificities, PPV, NPV, 
and AUC range from 36-89%, 49-100%, 31.5-100%, 76-
96%, and 0.43-0.93, respectively [9-11, 16, 18-20]. 

 The most robust marker of early severe bacterial 
infections in children and neonates appears to be PCT. 
Adding to its diagnostic capability, PCT levels appear to 
peak earlier, around 6 hours, compared to 24 hours for CRP, 
making it a potentially more helpful diagnostic tool [12]. 
PCT shares similar sensitivities, specificities, PPV, NPV and 
AUC ranges (90.5-100%, 75-100%, 51-100%, 91-100%, and 
0.85-1.0, respectively) as other markers but performs 
moderately better when compared head to head [9-11, 16, 
18, 20]. Elevated PCT levels appear to correlate with an 
increased incidence and severity of septic shock, multiple 
organ dysfunction syndrome (MODS), and mortality in 
critically ill patients with infection [8-17]. Although, using 
PCT to diagnose severe bacterial infection remains 
controversial with some claiming that it does not add any 
additional information to the currently used and more readily 
available diagnostic markers [17, 21]. Despite strong 
correlations, prospective data using PCT or other 
biochemical markers for clinical decision support are 
lacking. 

 No one biochemical marker is likely to be able to predict 
severity of illness with certainty. Instead, using multiple 
diagnostic markers will more likely lend the most assistance 
to a clinician’s best judgment [22]. Combining IL-6 and IL-8 
improves the diagnostic sensitivity and NPV (100% and 
100%, respectively) but decreases the specificity and PPV 
(55% and 50%, respectively) [19]. Similar results are 
obtained when combining IL-6 or IL-8 with CRP [19]. 
Likewise, the predictive sensitivity and NPV increases (96% 
and 98%, respectively) when PCT and CRP are combined 
but the specificity and PPV decreases (67% and 46%, 
respectively) [18]. Some of the newer biochemical markers 
showing some promise in pediatric septic shock include 
angiopoietin-2 (ang-2) and IL-13 [23, 24]. Unlike the 
previously mentioned biomarkers, ang-2, or more 
specifically the ang-2/1 ratio, may potentially lend itself to 
pharmacologic manipulation. Ang-2 is generally thought to 
promote capillary leak through the phosphorylation of 
myosin light chain kinase, the down-regulation of vascular 
endothelial cadherins and subsequent cellular contraction 
[25, 26]. These effects appear to be reversible in vitro with 
the administration of ang-1 [27]. To date, prospective data 
targeting the manipulation of the ang-2/1 ratio is lacking in 
humans. Finally, others are searching for septic shock-
specific gene polymorphisms and gene profiles to dictate 
therapy [28-31]. Again, these discoveries are still in the early 
investigative stages. 

 One characteristic that may add to the difficulty of 
finding a sepsis specific biochemical marker is that sepsis 
remains a very heterogeneous disease. In addition to its 
heterogeneity, age and developmental changes throughout 
childhood also make the management and study of pediatric 
sepsis challenging [32, 33]. In the newborn population, for 
example, the presence of relative right ventricular 
hypertrophy, patent foramen ovale and ductus arteriosis, and 
increased pulmonary vascular resistance make the diagnosis 
and treatment of neonatal septic shock even more 
challenging. Further complicating the treatment of these 

patients with septic shock are their relative deficiencies in 
thyroid hormone, glycogen stores, calcium storage within an 
immature sarcoplasmic reticulum and thermoregulation. Few 
studies have adequately assessed the impact of these 
important developmental differences on the subsequent 
management and outcome of critically ill children with 
sepsis. 

 Regardless of developmental age, it is still not well 
understood why similar causative organisms result in severe 
sepsis and death in some children but not in others. For 
example, a wide range of 5% to 30% of children with an 
infection will progress to septic shock [34]. Unlike their 
adult counterparts who typically present with hypotension 
and normal to even high cardiac output (classically described 
as “warm shock”), pediatric patients often will present with 
low cardiac output and elevated systemic vascular resistance 
(classically described as “cold shock”) [35]. The end organ 
dysfunction encountered in children with septic shock is 
often thought to be the result of decreased tissue oxygen 
consumption due to oxygen delivery deficits (i.e. tissue 
hypoxia) rather than oxygen extraction deficits, as seen in 
adult patients [36-38]. MODS is defined as having at least 
two or more failing organ systems and is commonly 
observed in children with severe sepsis and septic shock [39-
44]. As with adults, children with sepsis have a worse 
prognosis when MODS is present [45]. Many have shown 
that if MODS develops in a child with severe sepsis or septic 
shock, their risk of mortality is dramatically increased [41-
44, 46] as compared to patients without MODS [47, 48]. For 
example, in one epidemiologic study, children with severe 
sepsis who developed one organ failure had about a 7% 
chance of death. This risk of death steadily increased to 53% 
when four organ systems were affected [2]. 

 Maintaining adequate tissue oxygen delivery is the 
mainstay of pediatric sepsis treatment and will be discussed 
later in this review. However, new research has begun to 
alter this view. It is true that low cardiac output and 
decreased tissue oxygen delivery has been associated with a 
poor prognosis [36, 49-52]. Yet, both children and adults 
with normal oxygen delivery and poor oxygen extraction 
also tend to have poor prognoses [53, 54]. Severe sepsis and 
septic shock should now be viewed as diseases of the 
microcirculation which lead to endothelial abnormalities, 
capillary leak, decreased tissue oxygen delivery and 
utilization, and ultimately end organ injury [40, 55-57]. 

 Many postulate that the pathophysiology of sepsis can be 
explained by a dysregulation of microcirculatory 
homeostasis. A key molecule responsible for maintaining the 
microcirculation is nitric oxide (NO) and its primary 
substrate L-arginine. NO is one of the primary endogenous 
vasodilators affecting the cardiovascular system. An early 
review describes an increase production of systemic NO in 
sepsis but many of the studies referenced were performed 
with animal models [58]. A double blind randomized 
controlled trial attempting to block the excess NO seen in 
septic shock with NO inhibitors was ended early after poor 
results. Adult patients treated with NO inhibitors did possess 
improved blood pressures but at the expense of decreased 
cardiac output, pulmonary hypertension, heart failure and 
death [59]. Additionally, more recent data involving adult 
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patients with septic shock reveals unchanged or decreased 
levels of systemic NO [60, 61]. 

 Nevertheless, the previous studies may not be 
contradictory. The proinflammatory endothelial activation 
seen in sepsis does produce an increase in systemic NO 
production; however there may also be local 
microcirculatory reactive oxygen species and other 
scavengers leading to a relative NO deficiency in tissue beds 
[57]. This coupled with decreased endothelial NO 
bioavailability in sepsis will effectively shunt oxygen rich 
blood away from end organs and potentially lead to organ 
dysfunction [62]. In addition to shunting blood away from 
tissue beds, the decreased NO bioavailability may allow for 
the release of the vascular growth factor, ang-2, and its 
potential deleterious effects on the vascular endothelium 
which were previously discussed [63]. Further expanding on 
the concept of decreases in local bioavailability or NO 
production, a group investigated the role of endogenous 
asymmetric dimethylarginine (ADMA), a non-specific NO 
synthase inhibitor. They describe that the plasma L-
arginine:ADMA ratio is significantly reduced in adults with 
septic shock [64]. High ADMA, or low ratios, are associated 
with organ dysfunction due to the inhibition of NO 
production from the endothelium [64]. Unfortunately, the 
only pediatric study looking at ADMA levels in sepsis 
describes contradictory results to their adult counterparts. 
Weiss et. al. shows a decrease in ADMA in a pediatric septic 
shock cohort which results in an unchanged L-
arginine:ADMA ratio suggesting that the inhibition of 
endothelial NO synthase is less likely the predominate 
microcirculatory derangement in children with septic shock 
[65]. 

 The concept that some patients are unable to increase 
oxygen consumption despite adequate oxygen delivery has 
sparked new research focusing intracellularly at 
mitochondria [66]. Mitochondrial dysfunction resulting in 
decreased ATP concentrations has been associated with 
organ dysfunction and mortality in septic adults [67]. In 
addition to decreases in ATP, some have described a 
decrease in total intracellular mitochondrial units as a result 
of sepsis-mediated mitoptosis [68]. Reactive oxygen and 
nitrogen species produced from innate immune and 
endothelial activation enter the cellular compartment further 
compounding mitochondrial dysfunction and cellular 
oxidative stress [69, 70]. 

 Unfortunately, there is limited data utilizing antioxidents 
to improve mitochondrial function in pediatric septic shock 
patients [71]. Furthermore, what may benefit the adult 
patient with sepsis may not translate to the pediatric patient. 
For example, when measuring oxidative stress biomarkers, 
one group did not find significant differences when 
comparing septic children with healthy controls [72]. 
Therefore, current pediatric septic shock therapy 
recommendations continue to focus on maintaining 
appropriate oxygen delivery to the tissues through early 
goal-directed therapy. Reaching a goal cardiac index 
between 3.3-6.0 L/min/m  with rapid intravenous fluid 
administration within the first hour of resuscitation appears 
to improve survival [6, 49, 52, 73, 74]. The rapid reversal of 
shock improves outcome further if fluid is administered prior 
to the patient reaching the hospital [75]. 

 Historically, intravenous pulmonary artery catheters were 
routinely used to directly measure cardiac output and to 
obtain pulmonary artery saturations in order to approximate 
cardiac output and volume status. Unfortunately, the 
complications associated with the placement of these 
catheters and their presence within the heart, coupled with 
challenging data interpretation and no clear evidence of 
improved outcome, have all but made these catheters 
obsolete in pediatric critical care [76, 77]. In their place, 
alternative ways of approximating cardiac output and 
volume status are being used and validated. Superior vena 
cava (SVC) oxygen saturation appears to be a reasonable 
surrogate for mixed venous oxygen saturation (covered in 
depth in the first article of this supplement), and several 
clinical studies using SVC oxygen saturation  70% as a 
resuscitation target have shown improved outcomes in both 
critically ill children and adults with severe sepsis [6, 74, 
78]. The resuscitation fluid administration regimen or 
specific type used (i.e. colloid or crystalloid) seems to be less 
important as long as it is administered quickly and titrated to 
restore the patient’s mental status and end organ perfusion 
[6, 74, 79-81]. However, colloid solutions seemed to 
significantly reduce mortality in patients with severe sepsis 
from malaria [82]. Colloid fluid also increases systolic blood 
pressure and cardiac index in patients with dengue shock 
[83]. The previous studies may have shown statistical 
significance but many agree that the difference in fluid type 
may not be clinically relevant to change individual practice 
at this time. 

 Despite numerous studies and consensus statements 
about the benefit of early fluid resuscitation, the application 
of rapid fluid administration of > 40 mL/kg within the first 
hour of therapy continues to be problematic. The 2007 
pediatric and neonatal septic shock update from the 
American College of Critical Care Medicine recommends an 
even more rigorous fluid resuscitation goal. In this paper, 20-
60 mL/kg of resuscitation fluid is to be administered within 
the first 15 minutes in an attempt to achieve shock reversal 
[74]. Though data support these recommendations, strict 
adherence is difficult in clinical practice. One study 
identified lack of vascular access, lack of early septic shock 
diagnosis, and lack of treatment protocols as barriers to rapid 
fluid resuscitation [84]. For this reason, many institutions 
have started to create and use goal directed sepsis bundles. In 
a global performance improvement initiative targeted at 
improving the management of severe sepsis and septic shock 
in adults, the Surviving Sepsis Campaign focused primarily 
on establishing and implementing severe sepsis bundles [85]. 
A recent meta analysis showed a 1.91 odds of survival in 
critically ill adults with severe sepsis when bundled care was 
used compared to non-bundled care controls [86]. While the 
Surviving Sepsis Campaign excluded children, early studies 
have demonstrated the feasibility and ease of applying sepsis 
bundles to the pediatric population as well [78, 87, 88]. 

 Several studies have also demonstrated the adverse 
impact of fluid overload on survival, both in critically ill 
children and most recently in adults [5, 89-91]. Patients with 
stable hemodynamics and fluid overload may, in fact, require 
careful, ongoing titration of fluid management with control 
of the excess fluid through diuretic therapy. Furosemide and 
hydrochlorothiazide continue to be first-line diuretics and are 
preferred in patients without renal insufficiency. A minority 
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of patients will develop acute kidney injury and severe fluid 
overload necessitating renal replacement therapy. 
Continuous renal replacement therapy (CRRT), which 
encompasses the continuous venovenous hemofiltration 
(CVVH) modalities, provides continuous and measurable 
ultrafiltration rates without the variability seen with 
peritoneal dialysis (PD) or hemodialysis (HD) [92]. For 
these reasons, CRRT may be the preferred method of 
mechanical diuresis in hemodynamically fragile children 
with septic shock. Additionally, initiating CRRT early in the 
illness course before the child develops multiple organ 
failure or becomes excessively fluid overloaded (i.e. <10-
15% fluid overload) may be beneficial and improve outcome 
[89, 93, 94]. High volume CRRT has also been shown to 
remove pro- and anti-inflammatory cytokines by convection 
[95]. This type of therapy has been reported to improve 
survival in adult patients in some studies, but remains to be 
seen if this can translate into pediatric practice [96-98]. 

  Besides rapid fluid resuscitation, early antibiotic use has 
also likely contributed to the improved outcomes seen over 
the years with septic shock. During the first 6 hours of 
hypotension onset in adults with septic shock, each hour 
appropriate antibiotic treatment is delayed decreases survival 
by 7.6% [99]. Bundled care has also helped to improve time 
to receiving appropriate antibiotics in this patient population 
[86]. In pediatrics, antibiotics are selected based on common 
age specific infectious organisms. Despite the eradication of 
the offending organism, many children continue to 
deteriorate due to an overabundance of inflammatory 
cytokines and an uncontrolled inflammatory response. Some 
investigators have begun to look at modulating the immune 
response, as seen in the use of pentoxifylline with septic 
premature babies [100]. However, the most extensively 
studied and controversial immune modulator remains 
corticosteroid therapy. It has been well established that 
critically ill children with severe sepsis develop adrenal 
insufficiency which can result in low cortisol levels. 
Treatment with corticosteroids seems to improve 
cardiovascular parameters but not necessarily outcome [101-
105]. Septic shock alone and many of the medications 
administered while in shock (i.e. one dose of etomidate for 
endotracheal intubation), can exacerbate adrenal 
insufficiency [106-108]. Because of this, etomidate use is not 
recommended in pediatric septic shock [74]. Unfortunately, 
there are limited data in the form of clinical trials in children 
with severe sepsis or septic shock addressing routine 
corticosteroid therapy in the absence of adrenal 
insufficiency. A review of the corticosteroid debate describes 
the lack of a clear consensus agreement about “adequate” 
host stress response as one of the main barriers. This, 
coupled with a lack of clinical equipoise, has posed a 
significant obstacle to pediatric corticosteroid trials [109]. 

 In addition to antibiotics and intravenous fluids, a vast 
majority of patients with septic shock will receive some type 
of vasopressor or inotropic support. One of the major 
changes in the 2007 update on hemodynamic support for 
pediatric and neonatal septic shock from the American 
College of Critical Care Medicine is the recommendation to 
start inotropes peripherally until placement of a central 
venous catheter can be achieved [74]. Dopamine at doses 
less than 10 μg/kg/min remains the first-line inotrope at most 
institutions. Since dopamine causes vasoconstriction by 

releasing norepinephrine from sympathetic nerve fibers, 
catecholamine deplete children with septic shock may not 
respond. For this reason, many will utilize epinephrine at 
doses less than 0.3 μg/kg/min for first-line inotropy as well. 

 Whether from intensive care therapies or insulin 
resistance due to critical illness, many children with septic 
shock will develop hyperglycemia. Many retrospective 
studies in pediatric critical care have shown an association 
between hyperglycemia and organ dysfunction, risk of death 
and longer ICU length of stay [110-113]. Since much of the 
hyperglycemia recommendations are based on initial adult 
data, many in pediatric critical care have questioned 
appropriate glucose control in this patient population [114]. 
A recent randomized controlled trial demonstrated shorter 
intensive care unit stays and lower C-reactive protein levels 
in children aggressively treated with insulin therapy to 
control hyperglycemia. However, a large percentage of this 
cohort also developed profound hypoglycemia [115]. 
Though dangerous in all patient populations, the developing 
pediatric and neonatal brain can incur more severe, 
irreversible damage when faced with hypoglycemia [116]. 
As was seen with the activated protein C pediatric trials, this 
may be yet another adult septic shock therapy that is not 
translatable to pediatric patients [117]. Further adding to the 
controversy, the Normoglycemia in Intensive Care 
Evaluation and Survival Using Glucose Algorithm 
Regulation (NICE-SUGAR) study recently refuted the 
original adult study and showed a mortality increase in 
critically ill patients managed with tight glucose control 
[118]. Until a definitive large prospective trial in pediatric 
septic shock is completed, glucose control recommendations 
cannot be made. 

 Considered by many as a last option therapy, 
extracorporeal membrane oxygenation (ECMO) has become 
a more popular septic shock treatment modality in many 
pediatric tertiary care centers. ECMO centers have reported 
close to 84% survival in neonatal sepsis [119]. The data is 
less encouraging in pediatric sepsis, with survival 
percentages ranging from 37% to 66% [120-124]. The 
Extracorporeal Life Support Organization (ELSO) reports a 
national survival rate of 73% when neonates are placed on 
ECMO for sepsis or pneumonia. The survival rate is down to 
57% when older children are placed on ECMO for various 
infectious lung pathogens [125]. 

 In conclusion, the correct diagnosis continues to be of 
utmost importance especially with the increasing problem of 
antibiotic resistance. Biomarkers, such as PCT, need to be 
more thoroughly evaluated in a prospective decision-making 
manner before they can direct patient care. Additionally, 
more recent data has begun to shift our understanding of the 
pathophysiology of pediatric sepsis. It is becoming more 
evident that deficiencies in tissue oxygen consumption are 
the result of derangements at the microvascular level, 
specifically involving the endothelium and mitochondria. 
Septic shock should now be viewed as the result of [1] 
inadequate tissue oxygen delivery (systemic hypoxia) and 
[2] inadequate tissue oxygen utilization by the mitochondria 
(cytopathic hypoxia) [70]. New therapies should focus 
specifically on augmenting the vascular endothelium to limit 
capillary leak and prevent wide variations in tone. 
Angiopoietins appear to be the likely candidates. Antioxidant 
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research to improve mitochondrial function is encouraging in 
animal studies but more data is needed before these can be 
implemented in pediatric patients. Until then we are left with 
resuscitation fluids, antibiotics and other supportive 
measures as the only universally accepted therapies for 
pediatric severe sepsis and septic shock. 
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